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SYMPTOTIC ABSTRACT

Geostatistics is concerned with the analysis of spatially distributed and
correlated data such as arises in mining, hydrology, soil physics, geotech-
nics, and environmental monitoring and assessment. All of the various
forms of kriging utilize the variogram to determine the weight vector. Be-
cause the distribution of the sample variogram is known only under very
restrictive assumptions and because the (negative of the) variogram must
be conditionally positive definite, adequate methods of statistical infer-
ence are as yet lacking. Common practice incorporates both subjective
judgement by the user and some form of cross-validation. The efficacy of
the cross-validation is in turn dependent on the robustness of the kriging

estimator with respect to the variogram.

The process of variogram estimation is examined beginning with the
determination of sampling schemes. Properties of the sample variogram
are compared with various proposed robust estimators including the ef-
fects of non-uniform sampling patterns. The difficulties resulting from the

presence of drift or anisotropies are examined.

Key words: variogram, cross-validation, positive definiteness, radial ba-

sis functions.

261




262

1. INTRODUCTION

Geostatistics is a branch of stochastic processes and statistics primar-
ily concerned with estimation problems in hydrology, mining engineering,
soil physics, geosciences and more recently environmental monitoring. In
particular it is concerned with the use of spatially correlated data. The
spatial correlation is quantified by the semi-variogram, hereafter simply
called the variogram. The original terminology, semi-variogram, was uti-
lized by Matheron because of a one-half factor, i.e., half of a variance.
Because only one of the two quantities (semi-variogram vs variogram)
is actually needed a number of authors have used variogram in lieu of
semi-variogram for simplicity and that practice is followed here. While
the practice is not universal, it is quite common particularly in the En-
glish literature. The entire process of variogram estimation/modelling is
reviewed in subsequent sections, including the problem of the lack of ad-

equate statistical tests.

Let Z(z) be a random function defined in 1, 2 or 3 space. Z(z) might
represent ore grade in a mineral deposit, percent sulfur in coal, hydraulic
conductivity or depth to water table. Given data Z(z1), Z(z2),. .., Z(z»);

one objective may be to estimate
1
Zy = —/ Z(z)dz (1)
Viv

where V is a line segment, area or volume. Assuming Z(z) satisfies the
Intrinsic Hypothesis (see (5), (6)) Matheron (1965) defined the variogram
as follows: )

~v(h) = EVa,r[Z(:I: + h)— Z(z)] (2)
Knowledge of the variogram is then sufficient to determine the coefficients

in the Ordinary kriging estimator
Zy = \iZ(x:) (3)
1=1

so that Z} is unbiased and has minimum error variance.
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If Z(z) is second order stationary then
7(h) = o — o(h) (4)

where o(h) is the (auto)covariance. Note that the variogram may ex-
ist when the covariance does not. In particular if the variogram is un-
bounded the covariance does not exist. For example Brownian motion
has a variogram but not a stationary autocovariance. In general estima-
tion/modelling of the variogram is simpler than for the corresponding
covariance function. In contrast to some techniques which allow the use
of a sample covariance, the above estimator requires the use of a theoret-
ical model and this is the source of part of the difficulties in variogram

estimation. The theoretical variogram must satisfy two conditions

i. Conditional Positive Definiteness

_ / / du(z)y(z — y)dA(y) > 0

for any non-zero measures A, 4 with finite support and

/d,u(:c) = 0,/d)\(y) =0

ii.

Let A denote the set of valid variograms. A is closed under addition
and multiplication by positive constants. A number of known valid mod-
els are listed in Appendix A. Matheron (1973) has given a Bochner type
representation theorem for variograms. The Radial Basis Functions as

described by Micchelli (1986) are in fact variograms or generalized co-

variances.
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2. THE KRIGING ESTIMATOR

The cross-validation process utilizes properties of the kriging estimator

and we include a brief review of its properties. Z(z) is assumed to satisfy

the Intrinsic Hypothesis (Matheron, 1971)
7. E[Z(z+ k) - Z(z)] =0
for all z, h
. 1
1. y(h) = §Var[Z(:c + k) — Z(z)]
depends only on h

The kriging equations are

> (@i — 2 )i + p = v(zo — ;)

=1

The kriging estimator may also be written in the dual form

7* = Ebi'y(zo —z;)+a

=1

where .
> biv(zi — ;) +a = Z(s;)
=1

7=1...,n

(4)

(6)

(7

(8)

(9)

(10)

(11)
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The kriging estimator is exact, that is, if Z(z;) is a data value then
Z*(z;) = Z(z;) if Z(z;) is retained in the data set.

3. VARIOGRAM ESTIMATORS

A. The Sample Variogram

If Z(z) satisfies the Intrinsic Hypothesis then
1
1(h) = SE[Z(a + ) = Z(z)]? (12

and hence a logical estimator would be

N(h)

LS 2+ ) - Z(z) (13)

(W) = 38w L

where N(h) is the number of pairs Z(z; + h), Z(z;). Because v*(h) is es-
sentially a sample mean it has all the disadvantages commonly associated
with the sample mean, in particular it is non-robust. Since in general no
assumptions are made concerning the distribution of Z(z) and hence the
sampling distribution of 4*(h) will not be known. Davis and Borgman
(1978, 1982) have shown under reasonable conditions that a central limit
property applies

LW =) o,y (14)
(k)

as N(h) — oo. In addition they have tabulated the sample distribution
for v*(h) for certain variogram models assuming Z(z) is multivariate
normal by using Fourier Transforms. It is easy to see that under a Nor-
mality assumption, v*(h) is approximately chi-square. It is however, not
sufficient to obtain confidence intervals for each Ak although they may be

informative.

Aside from the non-robust nature of v*(k) a number of other difficulties
can arise in practice. In 2 or 3 dimensional space, h must be treated as

a vector; i.e. v*(h) is a function of distance r and direction 6. In order

to identify possible anisotropies v*(h) must be computed for a range of
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discussed later. In most instances a preliminary visual fit coupled with a

form of cross-validation is the preferred method.

When distance classes and angle windows are used it is often necessary
to experiment with the width of the classes and windows to obtain a rea-
sonably smooth plot. This use also complicates the problem of designing
a sample pattern to optimize the sample variogram. For regular or near-
regular grids, the number of pairs is small for short distances, largest
for intermediate distances and decreases as the distance exceeds half the
diameter of the region of interest. Warrick and Myers (1987) have shown
that it is possible to force the number of pairs for each distance/angle
class to approximate a prescribed distribution. It is desirable to have a
larger number of pairs for short distances since it is that portion of the
variogram that is most critical. It should be noted that an optimal sam-
pling pattern for variogram estimation will be quite different from that of

an optimal pattern for the subsequent kriging with a known variogram.
By definition v(0) = 0 whereas it is often found that

ﬁ’fﬂo”’ (R)>0 (19)

This discontinuity is incorporated into the variogram model and is known
as the Nugget affect. It may reflect several causes. Since there is always
a shortest intersample distance, v* is not known for shorter distances
and hence v is not directly estimated in this interval. In terms of the
kriging variance, modelling this uncertainty as a Nugget effect is the
conservative approach. When interpreted in terms of the covariance as in
eq. (4), the Nugget effect is seen to include data uncertainty, for example

measurement errors.

If Z(z) does not satisfy the Intrinsic Hypothesis, a weaker formulation

would be given by

Z(z) = Y(z) + m(z) (20)
E[Z(2)} = m(z) (21)
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where Y (z) satisfies the Intrinsic Hypothesis. In this, known as universal

kriging, the estimator remains unchanged but equations (7, 8) become

Do divwi— 2+ ) pefr(zs) = A(zo — zj) (7
=1 k=0

> Aifi(i) = fa(zo) (&)

The variance of the error of estimation is then larger to reflect the uncer-

tainty about m(z). In the above equations, it is assumed that

P
m(z) = Z ax fi(z)
k=0
where fo,..., fp are linearly independent, usually taken to be polynomi-
als. These functions are assumed known but ay, ..., a; are unknown. Un-

fortunately new difficulties arise in estimating/modelling the variogram
for Z(z). If m(z) is a first degree polynomial in the coordinates of z then

the sample variogram for Z includes a quadratic term, i.e.
* * 1
V38 =99 (0) + gz SLI¥ (o hy) = ¥z )lmas + ) = ()]

+ 537 s+ ) = m(z?

(22)
Since a valid variogram grows less rapidly than a quadratic, quadratic or
faster growth in the sample variogram is usually taken as evidence of non-
stationarity. If m(z) is fitted by least squares and the sample variogram is
computed from the residuals there will be a bias, as was noted by Math-
eron (1971) and Sabourin (1976). Neuman and Jacobson (1983) proposed
an iterative method for determining the order of m(z) and at the same

time estimating the variogram. Cressie (1986a) has proposed the use of
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Median Polish for estimating the drift and then modeling the variogram
on the residuals followed by kriging of the residuals and subsequent ad-
dition back of the drift. While this method does not require a complete
grid it does depend on a grid structure for the sample locations. Inasmuch
as the Neuman and Jacobson technique does not completely remove the
bias resulting from least squares fitting of the drift and Cressie’s method
requires a grid structure the problem of variogram fitting in the presence
of drift is not fully resolved. Matheron’s theory of intrinsic random func-
tions (1973) provides another approach by using generalized covariances.
The problem of estimation of generalized covariances is quite different
from that of estimating variograms. The basic idea is that increments
will filter out polynomials. Let Ay,..., A, satisfy the conditions given in
Eq. (8') then

AOEDIPVACH

is a generalized increment. The error of estimation of the kriging estimator
is such a generalized increment. K (h) is called a Generalized Covariance
if

VarZ(A) = > Ai\K(zi — zj)

for generalized increments. Generalized covariances provide an alterna-
tive way of dealing with non-stationarity. Variograms are zero-order gen-
eralized covariances. The software package BLUEPACK, (Delfiner, 1976)
incorporates an automatique structure recognition routine for general-
ized covariances. Unfortunately in some instances, anisotropies and non-

stationarity may be difficult to distinguish from each other.

Some erratic or unusual features of the sample variogram may be ex-
plainable by noting unusual characteristics of the sample location pattern
or the histogram of the data values. If the location pattern is long and
narrow or irregularly shaped, anisotropies may appear to be present. If

the histogram of the data is strongly bi-modal there may be jumps in the

variogram.
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All of the models listed in Appendix A are characterized by a few pa-
rameters and many of these are geometrically interpretable. For example,
the Spherical Model is determined by the Nugget Cy, the sill Cy +C; and
the range a, each of which can be visually estimated from the graph of

the sample variogram.

Kitanidis (1983) has proposed estimating the variogram parameters by
restricted maximum likelihood estimation, this requires a multi-variate
Normal assumption. Samper (1986) utilized an alternative approach to
maximum likelihood estimation by coupling it with cross-validation and

assuming the residuals from cross-validation are multivariate normal.

B. Other Estimators

Because of the sensitivity of the sample variogram to outliers, several
other estimators have been proposed. Armstrong and Delfiner (1980) used
median and quartile estimators. Cressie and Hawkins (1980) proposed
the square root of the fourth power of first order differences. Although
this estimator is biased, they computed the bias adjustment under a
Normality assumption. Essentially all of the methods proposed thus far
still utilize first order differences and hence many of the difficulties that
arise in connection with the use of the sample variogram are present with

alternative estimators.
C. Transformations

It is common in many forms of statistical analysis to apply a non-
linear transformation, for example square root or logarithmic for Analysis
of Variance. While such transformations may result in better behaved
sample variograms, with the exception of the logarithmic in the case of
a log-Normal distribution, it is generally difficult to relate the variogram
of the transformed data to the variogram of the original data or to utilize
the variogram of the transformed data for the kriging process. Cressie

(1985b) has shown that in the case of second order stationarity with
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known mean the § method can be used to approximate the variogram of
the transformed variable in terms of the known mean and the variogram
of the original. The approximation assumes that the transformation has
a continuous second derivative and is not applicable under the weaker

Intrinsic Hypothesis.

Under the assumption of multivariate log-normality the variogram for
Z(z) is given by
A(k) = MPe”’ (1 — e )] (23)

where
M = E[Z(z)],0? = Var[Y(z)] (24)

In the case of a log-normal distribution or for hydrologic parameters
such as hydraulic conductivity, a logarithmic transformation may help to
avoid the effect of the skewed distribution. Two approaches may be fol-
lowed: (1) transform the data, model the variogram and then re-transform
the variogram (2) transform the data, model the variogram, krige and
then re-transform the krige values. In the latter case a bias adjustment is
necessary. For further details, see Rendu (1979), Journel (1980) or Dowd
(1982). The basic problem is as follows: Let

Y(z)=InZ(z) (25)

Y*(zo) = Z Y (z) (26)

where the weights Ay,...,\, are found using the variogram for Y(z).
Unfortunately exp[Y*(z¢)] is a biased estimator of Z(zo). To compute
the bias correction factor one considers four cases; Simple and Ordinary,

Punctual and Block kriging as shown in Journel (1980).

In the case of non-stationarity the use of non-linear transformations
will complicate the problem of simultaneous estimation/modelling of the

drift and the variogram. In particular in the case of a logarithmic trans-

formation the drift becomes multiplicative.
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D. Regularized Variograms

For many geostatistical variates, the value represents an average over
a small volume rather than a point value. In turn the objective may be
to estimate a spatial average rather than to interpolate a point function.
Non-point support for the data leads to two problems. The first concerns
the estimation of the variogram and the second changes in the kriging
equations. The latter requires only a minor change in the kriging equa-
tions (7, 8), the right hand side term y(zo — z;) is replaced by ¥(V, z;)
where

W) =3 [ 2o —a))ds (27)

The same substitution is made in the Dual form of the kriging estimator.
For the former let v, be an elemental volume “centered” at z, v 45 the

translate by the vector h. Denote by

1
Zo, =+ / Z(y)dy (28)
and ) )
Zow =5 [ 20 =3 [ 20+ Ry (29)
and 1
’Yv(h) = 'Z_V&r[zvzy. - sz] (30)

if Z(z) satisfies the Intrinsic Hypothesis then
Yo(h) = ¥(v,vr) = (v, v) (31)

where ¥(u,v) = &% [, [, 7(z — y)dzdy. The most obvious change from
the point to the non-point variogram is the decrease in the sill, this is
comparable to the reduction in variance with an increase in sample size.
The models listed in Appendix A are all point models, hence if the data
used to estimate the variogram is non-point then one must exercise care
in fitting to a standard model. This complication also arises in the use of

cross-validation.
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As noted above, the variogram value must be replaced by an average
value when kriging a spatial average. Dunn and Alldredge (1982) have
proposed combining the steps of estimation of the variogram and (nu-
merically) integrating to obtain the average variogram. Unfortunately
the linear/polygonal approximation process does not ensure the use of a

valid variogram model.

4. ROBUSTNESS/CONTINUITY

It is not sufficient to approximate the values of the variogram at a finite
number of points, i.e. the positive definiteness condition must be satisfied,
hence it is necessary to approximate the variogram by valid models. See
for example Dunn (1983) and Myers (1984). Since the principal use of
the variogram is to determine the weights in the kriging estimator one
way to quantify the proximity of two variograms is by the change in the
weight vector. Diamond and Armstrong (1984) defined a neighborhood

for isotropic variograms

N,(8) = {glocA,sup |20 1) < 6) (32)
o<r ()
and then obtained bounds for | X || where X = [A1,...,An,p]T, the
solution vector of the kriging system, in the case of an ¢;, ¢, or £, norm.
Myers (1985, 1986) generalized the neighborhood definition and consid-
ered two additional definitions obtaining bounds for [);,...,A,]7. The
generalized neighborhood is given by

— (glged, sup |9 _
No(6r) = folged, sup 555 1< 6) (33)

The second is given by
M. (8,71) = {glg(h) = v(Rh) + en1(h),0 < e < 6;meA}  (34)
and the third by

NM,(e,6) = {glgeA, sup [y(h)—g(h)| < 8} (35)
0<|h|<e
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The first and third correspond to continuity of the weight vector with
respect to a change in the variogram. The second corresponds to Frechet
differentiability of the weight vector. The kriged value and the kriging
variance are both determined by the weight vector. Note that the weight
vector is not affected by changes in the data values whereas the kriged
value is, there is a distinction then between the continuity of the weight
vector and subsequently the kriged value with respect to the variogram
and the robustness of the kriged value with respect to the data values.

5. CROSS-VALIDATION

Since the kriging estimator is exact it suggests the following procedure:
sequentially, one at a time, delete a data value and krig the value for that
location using the remaining data. If the variogram model adequately
reflects the spatial correlation implicit in the data set then the kriged
values should be close to the observed values. This “closeness” can be
characterized in a number of ways, the following statistics are usually

computed:
()  L3L,(2(2:) - 2 ()]
(b)  EYRL[Z(:) - 2%z
(¢) 1, [Eed=E (g,
(d)  Sample correlation of Z(z), Z*(z)
(e)  Sample correlation of Z*(z),(2(z) — Z2*(z))/o;.

Theoretically the expected values of; (a) should be zero, (b) should be
small, (c) should be one, (d) should be close to one (this depends on
the Lagrange multipliers ug, k = 0,--- ,p as in (7’)), (e) should be close
to zero (this also depends on the Lagrange multipliers). In addition the
histogram of the Normalized errors is plotted and a list compiled for the
sample locations with large normalized errors. The latter is frequently

useful for identifying outliers, suspicious data or abnormalities of some
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other kind. Ideally all of the above conditions should be satisfied in prac-
tice an improvement in one statistic may degrade another. Temporary
suppression of the data locations with large normalized errors prior to re-
computation of the sample variogram may produce significant improve-

ments.

It was noted earlier that weighted least squares estimation of the var-
iogram is not optimal, this is because the loss function is not directly
related to the continuity of the kriging estimator. Any valid variogram
model will result in a minimal variance estimator since the minimized
variance is computed using that variogram. The least squares estimator
will work best for estimating those parameters appearing linearly in the
model whereas identification of the model type(s) appearing in the nested
structure is more important. For example if a linear model is used then
neither parameter has any effect on the weight vector hence “optimal”
estimation of the parameters is of little importance. Moreover in many
cases the geometry of the sample location pattern may be more important

than the variogram model in determining the weight vector.

By using the Dual form of the kriging estimator another form of cross-
validation is possible. Recall that the Dual form is

Z*(zo) = Z biv(zo—zi)+a (36)

and E(a) = E[Z(z)]. By analogy with regression methods consider the

following statistics

=32 - o)

1iwm%ﬂ2
n << Var(a)

The latter should be close to 1. The advantage of these statistics over
those given earlier is that all the data set can be used, i.e. no jack-knifing

is necessary.
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6. THE MULTIVARIATE PROBLEM

If the random function Z(z) is replaced by a random vector function
Z(z) = [Z1(z),. .., Zm(z)] then as shown in Myers (1982, 1984) the vari-
ogram is replaced by a variogram matrix J(h) where the diagonal entries
are the variograms of the separate components and the off-diagonals are

cross-variograms, that is,
3(h) = [7i;(h)] (37)
1i(h) = SVarlZie + h) - Zi(z)] (38)

yii(h) = %Cov(zi(x +h) = Zi(e), Zi(x + h) — Z;(z))  (39)

the positive definite condition for the variogram matrix is given by the

following
n n
—Trace Z Z F,T’"y(:c; —z;)I'; >0 (40)
i=1 j=1
for any points z1,...,z, and matrices I'y,..., ', with

ir,- =0 (41)

One consequence of this as seen in Myers (1984) is that cross-variograms
can only be validated in conjunction with the corresponding variograms.

While the sample cross-variogram

N(k)

S [Ziak + ) - Ziz)l[Zi(en+ B) - Zi(e)] (42)
k=1

vi5(h) = O]

estimates the cross-variogram v;;(h) the modelling process is more com-

plicated It is easily seen that

1) = IR = %(k) — 735 (43)

|
il
il

“H:

i
|
il

|

(K
bl
I
I

i
Wl
|

il
i
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where 'y?]'-(h) is the variogram for Zi(z) + Zj(z). This suggests
a procedure for modelling the cross-variogram. The variograms for
Zi(z),Zj(z), Zi(x) + Z;(z) are separately estimated and modelled in-
cluding cross-validation then using Eq. (38), vi;(h) is obtained. A further
adjustment may be necessary to ensure that the Cauchy-Schwartz condi-

tion is satisfied, i.e.
i (B < [yis(R)yss ()] (44)

Finally by using Co-kriging (Carr and Myers 1985), the variogram matrix

can be cross-validated.

7. FINAL COMMENTS

As yet without strong distributional assumptions statistical tests for
evaluating variogram estimators are still lacking. In light of the coinci-
dence between the dual form of the kriging estimator and interpolation
by Radial Basis Functions it may be desirable to search for a determinis-
tic characterization of the efficacy of variogram estimators. Diamond and
Armstrong (1984) have obtained bounds for the change in the solution
vector of the system (7), (8) [or (7’), (8)] for changes in the variogram
characterized by a particular choice of a neighborhood as well as for
changes in the order of the drift or the sampling pattern. Myers (1985),
(1986) extended these results to exclude the Lagrange Multiplier(s) since
the latter do not explicitly appear in the estimator and gave results using
a generalization of the neighborhood used by Diamond and Armstrong as
well as two new neighborhood definitions. In none of these three papers
were the results explicitly extended to a characterization of the efficacy

of variogram estimators.

NOTICE

Although the research described in this article has been funded wholly
or in part by the United States Environmental Protection Agency through
Cooperative Agreement 811938-02 to University of Arizona, it has not

been subjected to Agency review and therefore does not necessarily reflect

the views of the Agency and no official endorsement should be inferred.
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1. Spherical

2. Power

3. Gaussian

4. Exponential

Appendix A

Valid, Istropic Variogram Models

0o , r=0
7(r) =4 Co+Ci[3(5) - 5(5)°], 0<r<a
Co + Ch, a<r
COZOv 01201

7(?)={0 0

a+br*, 0<r
a<0, >0, 0<a<?2

7(1‘):{0 , r=0

Co+Cl[1—exp(-‘;’§3)], o<r
Cy>0, C120, a>0

) {0 , r=0
)=
i Co+Cill—exp(3)], O<r

COZO, C120, a>0
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ma‘gnitudes and also a range of angles. Unfortunately N(r,6) may be
very small for any particular choice of r, 8. This is true even for regular
grids. Most software packages incorporate the use of distance classes and
angle windows for computing v*. The simple form of the estimator (13)

is replaced by

5.8 < L6z = vl 2~ v, w)[Z(@) ~ Z(y)dzdy
’ 2 [T G(jz — yl,z — y,u)dedy

(15)

where

G(lz = yl,z — y,u) = [1n, (Iz — y[) = 1n,(J& —yD][L6, (6) — 15,(6)] (16)
(17)

and u is a unit vector in the direction 8. v*(7,0) is a sample variogram
but all pairs Z(z), Z(y) with by < |t — y| < ha, 61 < 8 < 6, are used to
compute v*(7, ). We assume 61, 62, b, hy are chosen so that h; < 7 < ha,
0; < 8 < 6,. This has the advantage of increasing the number of pairs
used to compute v* for each choice of 7,8. One disadvantage though is

that 4*(7,8) is then not an unbiased estimator of (7, §). In general

e av_ JI Gz —yl,z — y,u)y(jz — y|,0)dzdy
Ebr(r. )1 = JfG(lz = yl,z — y, u)dzdy (18)

The bias is in general not uniform with respect to 7,8 and is very de-
pendent on both the sample patterns and the “true” variogram model.
The bias will be least where «y is smoothest and greatest when v is non-
differentiable.

Some have proposed (Cressie, 1985) and others have used weighted
least-squares fitting of a valid model to the sample variogram. The re-
lationship to the robustness/continuity of the kriging estimator has not
been established. There are a number of reasons why this is not an op-

timal method and the results may even be mis-leading. These will be






